2019 2nd International Conference on Mechanical, Electronic and Engineering Technology (MEET 2019)

Analysis of SpaceWire Link Initialization Time
based on Timed Automata

Ping Luo,DaiWu Chen,Dong Xie,Yan Zhang
Department of Information Science and Engineering
Hunan University of Humanities,Science and Technology
Hunan, China
Email: luoping0718@163.com

Abstract—SpaceWire provides a full-duplex, bidirectional,
point-to-point, high speed data link for on-board network. It
is significant to make sure of the link connection successfully
and reliably. Based on timed automata, the paper presents
the modeling of the modules of Controller, Timer, Transmitter
and Receiver implemented in SpaceWire link interface, and the
simulation of the link initialization. The tool we adopted is
Uppaal, a timed automata based model checker for real-time
system. In Uppaal, we analyzed some time properties during
the link initialization process. It turned out that there were
details of the implementation inconsistent with the SpaceWire
protocol standard. The state machine of the Controller for the
link interface didn’t wait enough time in some states as expected.
Finally, we found out the reason caused the problem and revised
the implementation.

Key Words—SpaceWire;Timed Automata;Model Checking

I. INTRODUCTION

SpaceWire[1] is a serial link standard applied to onboard
network, publicly proposed by ESA(short for European Space
Agency)in 2003[2]. It provides a full-duplex, bidirectional,
point-to-point, high speed data link.The data signalling rate
at which a SpaceWire link shall operate ranges from 2Mb/s
to 400Mb/s. It has been widely applied to many aerospace
projects by ESA, NASA, JAXA, and many other organizations.
Considering the severe environment and special demand of
high reliability, the study is significant on the test and verifi-
cation of SpaceWire design and implementation.

Model Checking[3][4], put forward by Edmund Melson Clarke
etc., is one of the most effective method of formal verifica-
tion which uses formal methods of mathematics to prove or
disprove the correctness of target systems with respect to a
certain formal property. Extracting a model of a finite-state
system, model checking shall exhaustively and automatically
check whether the model satisfies a given specification. The
models extracted can be finite state machine, timed automata,
petri nets and Hoare logic and so on.Many tools are developed
for model checking, like SPIN[5], SMV [6], Uppaal [7], etc.
This paper chooses Uppaal as model checker.

Uppaal[8], available at www.uppaal.com, is a toolbox for
verification of real-time systems modeled as networks of timed
automata.It has been applied successfully in case studies rang-
ing from communication protocols to multimedia applications.
In Uppaal, a timed automaton is actually a state machine

Published by CSP © 2019 the Authors

extended with clock variables. A system is modeled as a
network of several such timed automata in parallel. Like the
model, the properties to be checked are formally expressed in
a simplified version of TCTL(timed computation tree logic).

The definition of timed automata will be introduced in section
IT in this paper. In section III, we will establish the timed au-
tomata of the module of Timer of the SpaceWire link interface
and test its function. And then we will model and check the
link initialization with a brief state machine of SpaceWire link
interface. At last in section IV comes conclusion.

II. TIMED AUTOMATON

Timed Automaton[9][10],is an extended finite automaton
with clock variables. Before giving its definition of the
syntax and semantics, we notate a set of clock variables as
C and the set of formulas as F(C) over atomic constraints
of the form « << n or x — y > n, where z,y € C,
n € N and e {<,<,=,>,>}. For all x € C, we define
a clock valuation, a non-negative real-valued function
v: C — Rsg. Let RC denote the set of all clock valuations.
Let vp(x) = 0,Vx € C.

(Definition.1) Timed Automaton (TA)
A timed automaton A is a six-tuple < L,ly,C, A, E, I >,
where

e L is a set of locations,

e Iy € L is the initial location,

o C is the set of clock variables,

e A is a set of actions and reactions,

e ECLxAxF(C)x2%x L is a finite set of edges
between locations, which contains a source location, a
guard, an action, a set of clocks to be reset, and a target
location.

e [is a function: L — F(C), giving a location an invariant
of clock condition.

(Definition.2) Semantics of Timed Automaton
A timed automaton A = < L,ly,C, A, E, I > can be seman-
tically defined as a labeled transition system < S, sg, —>.

e S C L xR is the set of states,

e 50 = (lo, 1) is the initial state,

270

e =»C S x (R>oUA) x S signifies the transition relations
defined by:

- (Lv) L (Lv+d), for Vd' € Rsg, if 0 < d <
d,v + d’ satisfies I(1)

- (Lv) S ,V),if 3e= (l,a,9,m,1') €E, s.t. v €
g, V' = v,_0, and v/ satisfies I(I’)

A system generally runs multiple interactive processes. It
comes natural to introduce the conception of a network of
Timed Automata, comprised of n timed automata sharing
a common set of clocks and one of actions. Let A; =
(Li,19,C A E;,1;),1 < i < mn, be a network of n
timed automata. The location vector can be written as | =
(11,12, ..., 1,). The initial location vector [0 = (19,19, ...,19).

III. MODEL CHECKING OF SPACEWIRE LINK INTERFACE

This paper discusses the transactions at the exchange level,
which is responsible for making a connection across a link
and for managing the flow of data across the link. We shall
focus on the link initialization before making connection
successfully. The link interface designed mainly consists of
modules such as Controller, Timer, Transmitter, Receiver,
CreditCounter, BaudrateCounter, Recovery, and ErrorNotifica-
tion. Considering the complexity of modeling and what we
care about here is the time property of the Controller during
the link initialization, a reduction of link interface is presented
including reduced modules of Controller, Timer, Transmitter
and Receiver. There are data and control characters across
the link, which are separated into two types: link-characters
(L-Char) and normal-characters (N-Char). L-Chars are only
used in the exchange level, including the flow control token
(FCT, 4-bit) character and escape (ESC, 4-bit) character. A
FCT, which is sent out by a link interface, indicates that there
is space for eight more N-Chars in the host receive buffer.
In addition, the NULL control code (ESC + FCT) is escape
sequence and may be regarded as L-Chars. NULLs shall be
sent by transmitter to indicate that the link is still active, if
there are no other characters to be delivered. N-Chars shall be
passed on to the packet level including data characters (10-bit)
and end-of-packet markers (EOP and EEP, 4-bit both).

A. Modeling

1) Controller: The Controller controls the overall operation
of the link interface. The state transition diagram is illustrated
in Figure.2.

The state machine includes six states: ErrorReset, ErrorWait,
Ready, Started, Connecting and Run. After a reset signal
from the system, the ErrorReset state shall be entered. The
Transmitter and Receiver shall be reset at the same time. After
a 6.4us delay the ErrorReset state shall be unconditional left
and the ErrorWait state is entered. In the Errorwait state, the
Receiver is enabled in order to receive NULLs from the other
link end. The state machine shall move into the Ready state
after a delay of 12.8us, which indicates that the link interface
is ready to initialize. The Started state shall be entered if
the link interface is enabled, where the Transmitter is able

End A

ErrorReset
Reset Tx
Reset Rx

After 6,4 us

End B

ErrorReset
Reset Tx
Reset Rx

After 12,8 us

Ready
Reset Tx

Enable Rx After 6,4 us

Link Enabled
Started

Send NULLs
Enable Rx

ErrorWait
Reset Tx
Enable Rx

Send NULLs
After 12,8 us

Link Enabled
Started
Send NULLs
Enable Rx

ZOINULL |20 NULLS oo

gotNULL

Connecting
Send FCTs/INULLs
Enable Rx s

4" Send FCTs

Connecting

~~end FCls o FOToNULLs

gotFCT

Send Time-Codes/
FCTs/N-Chars/NULLs
Enable Rx

Send Time-Codes/
FCTs/N-Chars/NULLs
Enable Rx

Fig. 1. Typical Link Initialization sequence
Reset
ErrorReset
Reset Tx
[Link Disabled]

Reset Rx

After 6,4 us

un
Send Time-Codes/

FCTs/N-Chars/NULLs

Enable Rx

ErrorWait
Reset Tx
Enable Rx

gotFCT After 128 us

After 12,8 us

Ready
Reset Tx
Enable Rx

A Enabled]

Connecling
Send FCTs/NULLs
Enable Rx

Started
Send NULLs
Enable Rx

gotNULL

Fig. 2. Basic state diagram for SpaceWire link interface

to send NULLs and NULLSs are expected to be received. If no
NULLs are arrived after a 12.8us timeout, the state machine
shall be reset moving to the ErrorReset state. Otherwise, it
shall move to the Connecting state and send at least one
NULL. Both NULLs and FCTs are allowed to be sent. And
FCTs are expected to be received. Once the arrival of an

271

FCT, the state machine shall move to the Run state, where
the link initialization is made successfully. If an FCT fails to
arrive within 12.8us, there may be something wrong with the
link connection. The state machine shall move back to the
ErrorReset state and attempt to make connection once again.
Resorting to the Uppaal, the Controller is modeled as a timed
automaton illustrated as Figure.3.

ErrorReset

sendNChar[id]!

Afterb4id]?

ErrorWait 0

enableRx[id]

allResef[id]!

After128[id]?
t=0

Ready

gotNULL[id]?

Started

Fig. 3. Timed Automaton of the Controller in Uppaal

2) Timer: The timer provides the 6.4us and 12.8us timeouts
in link initialization. Its functional block diagram is illustrated
as Figure.4.(a)

A timed automaton of timer is modeled as Figure.4.(b). A
clock variable clk is defined as the system clock. The time unit
is set to be 100ns, due to the data signalling rate of 10M/s for
link initialization, which means the transmitter shall send a bit
per unit of time (100ns). A bool variable frigger defined to
trigger the After64 or After128: 0 meaning After64 waiting for
trigger, 1 meaning Afteri28.

clk=0,trigger=0

Clock ———|

——After6d clk==64&&trigge! 6488<rigger

Reset — |

TriggerControl

——After128

TimerReset —| After

64[id]!

clk=0,trigger=0 clk=0,trigger=1

(a) (b)

Fig. 4. Diagram of the Timer module interface(a), Timed Automaton of the
Timer in Uppaal(b)

3) Transmitter and Receiver: The transmitter is responsible
for encoding data using Data-Strobe(DS) encoding technique.
It transmits N-Chars, FCTs, NULLs and Time-Codes request-
ed to be sent from the host system. The receiver decodes the
DS signals(Din and Sin) to produce N-Chars, FCTs, NULLs,
and Time-Codes. When detecting the arrival of the NULLs
or FCTs, it shall report to the state machine of Controller.

272

sendNChar[id]?

sendTimeCode[id]?

enableRx[id]==1

a Rcsct'c]

got_FCTI[id]

Reset[id]?

got_NULL[id]

SoFCTra 9oL FCTldl=0

sendNUVIL [id]? sendECTI[id]?
clk=0 clk=0

clk<=8 clk<=4

Fig. 5. Timed Automata of Transmitter and Receiver

Considering these two modules are not the key issue we care
about in this paper, we extract a high level model assuming
they function well. See the Figure.5.

B. Verification

Uppaal uses a simplified version of CTL to express the
requirement specification. Path formulae and state formulae
are both supported as shown in the following Tabular.

Property Expression Interpretation

Reachability | E<>p p is satisfied in reachable states

Safety Allp, E[lp something bad never happens

Liveness A<>p, p— >q p is eventually satisfied

Extrema infexpression:list | infima of the list
supexpression:list | suprema of the list

We specify several properties to verify the correctness of
the timer module and controller module as follows:

1) The signal After64 of Timer should be triggered after 64
units of time since reset.

E<:StateMachine(0). ErrorWait && Timer(0). clk_test—64
Verification/kernel/elapsed time used: Oz / Oz / 0.017s.
Fesident/virtual memory usage peaks: 9, 120KB / 29, 944KE.

Property i1s satisfied.

2) The signal After64 of Timer should be triggered after
128 units of time since reset.

E<»StateMachine (D). Ready && Timer (0). clk_test=—128
Verification/kernel felapsed time used: 0s / Os / 0.015s.
Resident/virtual memory usage peaks: 9, 916KE / 31, 336KE.

Property is satisfied

3) Link connection can be made successfully.

E<»StateMachine(0). Run &#StateMachine(1). Run
Verification/kernel/elapsed time used: 0.016sz / Oz / 0.013s.
Resident/virtual memory usage peaks: B8, T36KE / 30, 548KE.

Property 1s satizfied.

4) How long will the Controller stay in the state of Started
at most?

got_NULL[id]=0

gotNULL[id]!

sup{StateHachine]:':l].Etarted}Z
StateMachine[0].t <= @4

The result turns out to be 64(6.4us). However, the
answer should be 128(12.8us). If a NULL fails to arrive
within 12.8us in the Started state, the state machine
shall unconditionally move into the ErrorReset state.
Accordingly, we find the timer is not reset before
entering the Started state. The same problems are also
occur in the state of Ready and Connecting. Thus
a process of ResetTimer is added as follow, which
is responsible for resetting the timer when in the
ErrorReset, Ready, Started and Connecting state.

CASE ResetTimer_state IS

WHEN ErrorResetDetected => TimerReset <= "1’;
ResetTimer_state <= ErrorResetLeft;

WHEN ErrorWaitDetected => TimerReset <= "1’;
ResetTimer_state <= ErrorWaitLeft;

WHEN StartedDetected => TimerReset <= "1’;
ResetTimer_state <= StartedLeft

The models of the Controller and Timer are modified. We
check the property 4) again, the result is shown as follow.

sup{Statel[achineIU].Started}:
StateMachine[0].t <= 128

IV. CONCLUSION

Resorting to the model checker Uppaal, this paper estab-
lished the network of timed automata of SpaceWire interface,
including modules of Controller, Timer, Transmitter and Re-
ceiver. Both the interface to end A and end B were modelled.
We paid attention to link initialization across the SpaceWire
link. As a real-time communication network, SpaceWire link
should provide real-time end-to-end data transfer. This paper
focused on the time performance during the link initialization.
Through the verification of time property of the link initializa-
tion, some errors in detail were found. Thus, it turns out that
model Checking is an effective method to model and test. As
one of the method of formal verification, model checking is
promising. Future work may focus on the application to more
real-time system using Uppaal.

ACKNOWLEDGMENT

We thank the group of formal verification of Capital Normal
University for the work done before. Thank X.J. Li for
answering the question about SpaceWire protocol, R. Wang
for helping with Uppaal, B.Q.Zhou for the paper writing and
revising. S.L. Xie did a lot of favor in this work.

273

REFERENCES

[1] http://www.spacewire.esa.int/content/Home/HomelIntro.php

[2] European Cooperation for Space Standardization, SpaceWire-Links, n-
odes, routers and networks, ECSS-E-ST-50-12C, July 2008, available
from http://www.ecss.nl/.

[3] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press,
2000

[4] Edmund M. Clarke, The Birth of Model Checking, Lecture Notes in
Computer Science, 2008, Volume 5000/2008.

[5] http://spinroot.com/spin/whatispin.html

[6] A. Cimatti, E. Clarke, F. Giunchiglia, NUSMV: a new symbolic model
checker, International Journal on Software Tools for Technology Transfer,
2000, Volume 2, Issue 4, pp 410-425.

[7] http://www.uppaal.org/

[8] Gerd Behrmann, Alexandre David, and Kim G. Larsen, A tutorial on
Uppaal, In proceedings of the 4th International School on Formal
Methods for the Design of Computer, Communication, and Software
Systems (SFM-RT’04). LNCS 3185.

[9] R. Alur and D. L. Dill. A theory of timed Automata. Theoretical Computer
Science 126(2):183-235, 1994

[10] Johan Bengtsson and Wang Yi, Timed Automata: semantics, algorithms
and tools, In Lecture Notes on Concurrency and Petri Nets. W. Reisig
and G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004.

[11] C. McClements, S.M. Parkes, and A. Leon, The SpaceWire CODEC,
International SpaceWire Seminar, ESTEC Noordwijk, The Netherlands,
November 2003

[12] Christel Baier and Joost-Pieter Katoen, Principles of Model Checking,
London, England: The MIT Press .2008

[13] R. Wang, X. Song and M. Gu, Modelling and verifcation of program
logic controllers using timed automata, The Institution of Engineering
and Technology, 2007, 1, (4), pp.127-131

[14] Kim G. Larsen, Formal methods for meal mime systems: automatic
verification and validation, presented at the ARTES summer school,
August 1998.

